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ABSTRACT

 Laser-Induced Breakdown Spectroscopy (LIBS) is an atomic emission technique 

that uses a pulse laser to ablate a sample and form a plasma. Atomic emissions from the 

plasma provide unique elemental characteristics regarding the composition of the sample. 

The technique produces valuable qualitative results, but the accuracy of quantitative 

analyses is hindered by spectral line broadening mechanisms and laser pulse 

reproducibility, among other factors. The Spatial Heterodyne Spectrometer (SHS) is a 

high-resolution spectrometer with very high light throughput, and its use to LIBS is 

currently limited to two peer-reviewed publications. In the following work a high 

resolution SHS is developed and explored for LIBS measurements of isotopes.
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CHAPTER 1 

REVIEW OF LASER-INDUCED BREAKDOWN SPECTROSCOPY

1.1 INTRODUCTION TO LASER-INDUCED BREAKDOWN SPECTROSCOPY 

Laser-induced breakdown spectroscopy (LIBS) is an atomic emission technique 

that uses a high-power laser beam focused onto a sample with an irradiance of more than 

one GW/cm2 at the focal point. Initially, the sample is ablated followed by the formation 

of an overall electrically neutral plasma, ideally with the same elemental chemical 

composition as the ablated material from the sample. 1 The plasma provides photo and 

thermal excitation of the atoms, ions, and molecules producing an emission continuum 

due to Bremsstrahlung and recombination events after which atomic/ionic and molecular 

emission occur. 1 Figure 1.1 shows a LIBS energy level diagram showing the excitation 

and emission events during the evolution of the plasma. Bremsstrahlung emission is 

created by free electrons emitting a photon due to acceleration and deceleration initiated 

by inelastic collisions with other particles. Recombination emission is from photons 

being emitted during the loss of kinetic energy when free electrons recombine with 

ionized species. Atomic/ionic emission is due to the element-dependent transitions 

between the electronic states and thus provides unique fingerprints for each emitting 

species. Molecular emission occurs after the plasma cools sufficiently to allow molecules 

to form and are often radical species. The plasma temperature is still very high during this 

period and continues to thermally excite atoms and molecules. 1,3 The atomic, ionic, 

and/or molecular emission signals can be detected using time-resolved methods as the 
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plasma cools. 1 Continuum emission decays at a much faster rate (fs) than the atomic 

emission (ns) leaving a window for detection of elemental spectral lines using gated 

detection. 1,2 

LIBS measurements require only line-of-sight to the sample and no sample 

preparation. 4,5 The non-invasive characteristic of the technique offers the capability to 

make remote, in-situ chemical measurements in extreme environments. Drawbacks of the 

technique are low sensitivity, poor shot-to-shot reproducibility, and spectral line 

broadening effects due to plasma-sample interactions. 1 Poor reproducibility is due to 

variability in laser power, atmospheric conditions, laser beam shape, spot size, and/or 

position of the ablation point (which becomes critical at standoff distances). 6,7 Many 

studies aimed at increasing the sensitivity and overcoming matrix effects produced by 

plasma-sample interactions that cause the broadening mechanisms have been 

investigated. 1,8,9 Plasma properties causing spectral line broadening are discussed later in 

the section describing plasma formation, and line broadening is the primary reason 

measurements of isotopes using LIBS is difficult. However, recent research by D’Ulivo 

et al has shown that successful qualitative and quantitative measurements of chemical 

compositions of isotopes are possible. 10  

1.2 LIBS INSTRUMENT DESIGN 

The general instrument design for LIBS has five components as shown in Figure 

1.2 and are as follows: high-power pulsed-laser, focusing optics, collection optics, 

spectrometer, and a gated detector. The pulsed-laser is commonly a neodymium yttrium 

aluminum garnet (Nd: YAG) laser operating at the 1064 nm fundamental or frequency-

doubled wavelength (532 nm) with nanosecond pulse-widths or titanium:sapphire lasers 
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operating typically around 800 nm (range from 600 nm – 1100 nm) at femtosecond pulse-

widths. 11 The focusing optics are generally a simple lens positioned such that the focal 

point of the lens is at or just below the surface of the sample for solid samples. For 

liquids, the focus can be on the surface or inside the sample. In systems setup for back-

collection, the focusing optics serve as the collection optics. The collected signals are 

directed into the entrance aperture of the spectrometer where the wavelengths are 

separated and sent to the detector. 

1.3 LASER-INDUCED PLASMA (LIP) FORMATION 

Plasma formation is a multi-photon process that is initiated by the high irradiance 

at the focal point which provides enough energy to ablate a small portion of the sample. 

As the ejecta from the ablation point is bombarded with more photons, a plasma forms 

reaching temperatures greater than 15,000 K. 1 The plasma has an overall neutral charge 

but contains localized area with a high density of free electrons and ionized atoms which 

produce locally strong electric fields throughout the plasma.  The electric fields cause 

splitting of normally degenerate energy levels, known as the Stark effect. The Stark 

effect, commonly referred to as Stark broadening of atomic emission lines, is similar to 

the Zeeman effect caused by strong magnetic fields. 12,13 The splitting of the electronic 

degeneracies produce line broadening in atomic spectral lines that can be on the order of 

hundreds of picometers. 1 Doppler broadening also occurs within the LIP when the 

emitting species is moving away from or toward the detector. Doppler broadening can be 

on the order of tens of picometers. 1 
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1.4 LIBS APPLICATIONS 

Qualitative and quantitative applications of LIBS have expanded due to advances 

in technology and growing desire for portable instrumentation. 2,8 LIBS techniques have 

been explored for elemental, isotopic, and molecular analyses for applications in 

planetary exploration, 1,14,15 nuclear material proliferation, 8 and explosives detection. 

4,16,17 Other fields where a significant interest in LIBS techniques is growing are industrial 

materials processes, agriculture, ecology, biology, biomedical, geochemistry, forensics, 

and cultural heritage. 1,6,8,9,18,19  

Planetary research and exploration can benefit greatly from the ability to make 

remote chemical measurements in extreme environments in real time. The ChemCam 

LIBS instrument currently onboard the Mars Curiosity Rover has successfully 

demonstrated the effectiveness of remote LIBS and defines LIBS as a valuable tool in 

planetary exploration. 14,15 With recent terrorist threats to the military and civilian 

populations, LIBS techniques have been developed for explosives detection. 4,16,17 

Agricultural LIBS applications include pH measurements and trace metal soil analysis. 8 

For industrial applications, LIBS measurements are used for in-situ quality assurance in 

the production of bulk materials. 8   

LIBS has received much attention in the nuclear proliferation field and proves to 

be a much-needed asset for investigators provided reproducibility and quantification 

issues are resolved. 3 LIBS measurements are generally associated with atomic emission 

but in recent years applications in molecular emission such as laser ablation molecular 

isotope spectrometry (LAMIS) have been explored. LAMIS is basically LIBS 

measurements of molecular emissions using longer gate delays. 3 
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Using the innovative spatial heterodyne spectrometer (SHS), LIBS has the 

potential to provide remote, in-situ, multi-element and isotopic chemical measurements 

for investigation of nuclear materials and beyond. The SHS was first described by 

Harlander and is an interferometer like the Michelson interferometer but uses fixed 

gratings tilted to a specific angle dictated by a user-defined Littrow wavelength. All other 

wavelengths heterodyne about the Littrow wavelength producing high-resolution spectra 

with the benefit of high-throughput. 20
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Figure 1.1 The figure illustrates a LIBS energy level diagram for the excitation and emission transitions during the 

evolution of the LIP. From left to right, photo or thermal excitation occurs, (top) Bremsstrahlung emission, non-

emissive relaxation transitions, recombination events, and atomic/ionic emissions. 
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Figure 1.2 General layout scheme for LIBS. The collection lens is oriented in the orthogonal position but is often 

placed behind a dichroic mirror for 180-degree collection of LIBS signals.  
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CHAPTER 2 

ISOTOPE MEASUREMENTS USING OPTICAL EMISSION

2.1 ISOTOPE MEASUREMENTS FOR NUCLEAR PROLIFERATION 

Isotope measurements are important for nuclear proliferation and material dating. 

Nuclear safeguard inspections mandated by the Department of Energy (DOE) and 

International Atomic Energy Agency (IAEA) require the ability to measure U and Pu 

isotope ratios. 3,10,21,22 The isotopic spectral line shift for the 424.4 nm emission line of 

235U/238U is ~25 pm, for the 594.5 nm emission line of 239Pu/240Pu it is ~6 pm, and for 

6Li/7Li at 670.8 nm it is ~15 pm. 2,21,22 Optical separation and detection of the small 

isotopic shifts in spectral emission lines are challenging for any high-resolution 

instruments and even more so for LIBS measurements because the magnitude of spectral 

emission line broadening can be an order or two larger than the isotopic emission line 

shifts. 

The most well-known and well-established techniques for measuring isotope 

ratios are mass spectrometry (MS) methods such as thermal-ionization-MS (TIMS) and 

inductively-coupled plasma-MS (ICP-MS). The extremely high mass accuracy of MS 

techniques makes it ideal for isotopic measurements because each isotope has a distinct 

mass and the chemical properties of the isotopes are so similar that matrix effects are 

generally insignificant. 23 High-resolution MS instruments are expensive, large, and often 

require complex sample preparation. A portable instrument capable achieving high-
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resolution isotopic measurements would be a considerable asset to nuclear site 

investigators. 2,3 

2.2 ISOTOPE MEASUREMENT INSTRUMENTS AND METHODS 

Optical techniques used to measure isotope emission include inductively-coupled-

plasma optical emission spectrometry (ICP-OES), laser ablation molecular isotope 

spectrometry (LAMIS), and LIBS. Molecular rotational-vibrational (Ro-Vib) analytical 

techniques such as Raman and infrared (IR) are sensitive to the change in mass with 

regards to isotopes but only provide primarily molecular information or with limited 

elemental information.  

Krachler et al developed an analytical method to determine the production age of 

Pu materials using a commercially available ICP-OES instrument to measure isotope 

ratios of 234U and 238Pu. The group was able to achieve spectral resolution less than 5 pm. 

24 The procedure also allowed for a direct measurement of the isotope emission lines for 

the 234U and 238Pu simultaneously without requiring chemical separation of the two 

analytes normally required for MS. ICP-OES allows multi-element detection but requires 

a clean laboratory environment and sample preparation.  

A recently described laser ablation technique called LAMIS has been used to 

measure numerous isotope ratios. 3,8,21,22 LAMIS is similar to LIBS in that emission is 

measured following laser ablation, however, LAMIS requires long gate delay times to 

allow elements to recombine or combine with oxygen or other atmospheric elements to 

form molecules. The newly formed molecules are thermally excited within the plasma 

producing molecular Ro-Vib emission bands that are sensitive to element mass. 25 

Molecular isotope shifts are considerably larger than electronic isotope shifts so only 
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moderately high-resolution is required to resolve peaks. 2,24 One drawback of the method 

is that only one element can be analyzed per acquisition. An instrument with the same 

capabilities as LAMIS instruments that can measure a broader range of elements would 

be ideal. 

Despite broadening of elemental spectral emission lines, LIBS spectroscopy has 

been successfully demonstrated for elemental, isotopic, and molecular analyses and can 

do so without the use of a vacuum chamber or carrier gases like many current methods 

used for high resolution elemental analysis. 1-3,10 Markushin et al quantitatively 

characterized D/H ratios in protein using LIBS. 9 D’Ulivo et al have investigated ratios of 

D/H in gas reaction products and reported isotopic resolution for the Balmer emission 

line of D/H (~656 nm) with a separation of ~180 pm despite the Stark broadening of the 

emission lines. 10 Cremers et al were able to measure and resolve 6Li/7Li with a handheld 

LIBS unit and high-resolution Echelle spectrometers (6.8 pm – 10.0 pm resolution). 2 

Line widths for LIBS spectra are generally hundreds of picometers at atmospheric 

pressure making resolution of most elemental isotopic emission line shifts extremely 

difficult. 2 Long gate delay times allow plasma expansion, thermal emission, and electron 

density to decay to levels below the intensity of the atomic emission lines. 10 Stark 

broadening would be significantly reduced with a lower electron density and weaker 

electric field producing a window of opportunity where full-width at half-maximum 

(FWHM) may be less than elemental isotopic line separations. While atomic emission 

decays with the plasma it does so at a slower rate. A high-throughput spectrometer would 

be able to take advantage of the window during long gate delays.
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CHAPTER 3 

HIGH-RESOLUTION SPATIAL HETERODYNE LIBS 

SPECTROMETER (SHLS)

3.1 THE SPATIAL HETERODYNE LIBS SPECTROMETER (SHLS) 

The SHS was first described by Harlander. 26 The SHS is similar to a Michelson 

interferometer but uses tilted, stationary diffraction gratings in lieu of mirrors. This gives 

the SHS a huge advantage over other high-resolution spectrometers since it has no 

moving parts. The schematic and working principle of the SHS can be seen in Figure 3.1. 

The angle of tilt is dictated by the Littrow wavelength which is a user-defined wavelength 

that is retroreflected with respect to the optical axis and produces no interference pattern 

upon recombination. All other wavelengths are diffracted at wavelength-specific angles 

from the optical axis and produce crossing wave-fronts at the beam-splitter to form a 

wavenumber-dependent interference pattern that is heterodyned around the Littrow 

wavenumber. The heterodyne interference pattern allows for high spectral resolution with 

a limited number of detector elements. The SHS has no moving parts and is thus, 

compatible with gated detection. 20 

The SHS design is compatible with a broad range of wavelengths ranging from 

the ultraviolet (UV) to the near infrared (NIR). 26-28 The two SHS gratings are tilted at 

angle θL, the Littrow angle, so that one wavelength is retroreflected and can be calculated 

using the grating equation (1). 

𝒎 · 𝝀𝑳 = 𝒅 · (𝐬𝐢𝐧𝜶 + 𝐬𝐢𝐧𝜷)       (1) 
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In this equation m is the grating order, λL is the user-defined Littrow wavelength 

and d is the distance between the grooves on the grating. 26-28 In the case of the Littrow 

condition, the angle of incidence (α) is equal to the angle of reflection (β) so the equation 

becomes (2): 

𝒎 · 𝝀𝑳 = 𝟐𝒅 · 𝐬𝐢𝐧 𝜽𝑳        (2) 

All other wavelengths are heterodyned about the Littrow wavelength creating a 

wavelength dependent fringe pattern upon recombination at the beam-splitter. The 

Fourier transform of the interferogram yields the frequency spectrum.  

The number of fringes (f) at a selected wavenumber is related to the Littrow 

wavelength by equation (3): 

𝒇 = 𝟒 · (𝝈 − 𝝈𝑳) · 𝐭𝐚𝐧𝜽𝑳       (3) 

In equation # σ is the wavenumber of interest and σL is Littrow in wavenumbers. 

26-28 Wavenumbers above and below Littrow produce the same fringe patterns and thus, 

overlap on the detector, as shown by the degeneracy in equation (3). By cross-tilting one 

of the gratings vertically, the fringes above and below Littrow are rotated in opposite 

directions and both can be recovered without ambiguity using a 2D Fourier Transform. 20  

The resolving power (R) of the SHS is equal to the number of grooves illuminated 

on the gratings as shown in equation (4): 

𝑹 = 𝟐 · 𝒘 · 𝒅 =
𝝀𝑳

𝜟𝝀
        (4) 

In equation 4 w is the grating width, d is the groove density, λL is the Littrow 

wavelength, and Δλ is the resolution (FWHM). 26-28 The spectral range (SR) is inversely 

proportional to resolving power (R) as shown in equation (5): 

𝑺𝑹 =
𝑵·𝝀

𝟐·𝑹
         (5) 
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where N is the number of horizontal pixels on the detector. 26-28 

The first use of the SHS for active spectroscopy was described by Gomer et al for 

Raman spectroscopy. 29 The first spatial heterodyne LIBS spectrometer (SHLS) was 

described by Gornushkin et al 30 followed by a standoff version described by Barnett et al 

for LIBS measurements up to 20 m. 20 The high-throughput and spectral resolution offers 

the potential for high resolution LIBS measurements while maintaining high optical 

throughput. The resolution of the SHLS combined with its wavelength precision and 

stability should allow more precise measurement and resolution of elemental isotope 

spectral emission. 

3.2 EXPERIMENTAL SETUP 

The high resolution SHLS uses a Continuum Surelite SLII-10 (Continuum, San 

Jose, CA, USA) Nd:YAG pulsed-laser operating at the fundamental wavelength with 

power of ~10 – 15 mJ per pulse with a pulse-width of ~7 ns. The laser beam was focused 

onto the sample using an f/2 planoconvex lens with antireflective coating. Fine tuning of 

the focal point was achieved by mounting the focusing lens to a x-y translational stage. 

The same type of lens was used for the collection and was placed such that the focal point 

was overlapped with the focal point of the focusing lens. Two 25 mm irises were used to 

define the entrance aperture of the SHS and to minimize the amount of off-axis light 

collected. The SHS was constructed as shown in Figure 3.2 with 25 mm x 25 mm 300 or 

600 grooves/mm diffraction gratings blazed at 500 nm and Thor Labs Model BS013 25 

mm non-polarizing 50:50 cube beam-splitter. The diffraction gratings were mounted to x-

y translational stages and a micrometer-adjusted rotational stage for fine-tuning the 

grating angle and distance. A Nikon AF Micro Nikkor f/2.8 105 mm camera lens was 
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used to image the face of the diffraction gratings onto a Princeton Instruments PI-MAX 

1024 x 256 pixel thermoelectrically-cooled, intensified charge-coupled device, or iCCD, 

(Princeton Instruments, Trenton, NJ) with 26 μm pixel size. The iCCD gate timing 

parameters for LIBS measurements of copper were 1.5 μs for the delay and 10.5 μs for 

the width with a gain of 255 to measure LIBS signals and helium-neon (HeNe) lamp to 

maximize signal-to-noise. The imaging lens was positioned such that the diffraction 

gratings and iCCD were two focal lengths away to give unity magnification. The 

illuminated portion of the gratings was ~22 mm which just slightly over-filled the 

intensified portion of the CCD when imaged into the detector. Copper samples (unknown 

purity) measured with the SHLS were obtained from an industrial supply company. 20  

3.2 RESULTS AND DISCUSSION 

The SHS was aligned by aiming the Thor Labs 532 nm alignment laser through 

the center of the entrance face of the beam-splitter and measuring the height of the 

transmitted and reflected beams. The tilts of the beam-splitter mount were adjusted such 

that the back reflection from the beam-splitter retroreflected and the transmitted and 

reflected laser beams were at the exact same height as the beam at the exit port of the 

alignment laser. The zero-path difference (ZPD) between the diffraction gratings was 

achieved by measuring the distance between the face of each grating and the center of the 

beam-splitter using a ruler. The ZPD was fine-tuned by shining white light into the SHS 

and adjusting the distance using the translation stage micrometer and vertical grating tilt 

until vertical white-light fringes were observed from the output of the SHS. The white 

light fringes indicate that the ZPD is within 10 nm which is about the coherence length of 

white light.  
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The initial Littrow wavelength was set to 532 nm using a Thor Labs green 

alignment laser. The gratings were rotated such that the first order from each grating 

overlapped and produced a fringe pattern with only one to two vertical fringes were 

visible. For measuring a low-pressure mercury lamp, the gratings were rotated by 

adjusting the micrometer-actuated rotation in 1 μm increments to increase the Littrow 

wavelength to ~544 nm. To accomplish this an Ocean Optics HG-1 reference lamp was 

directed into the SHS and a measurement was made after each adjustment until a fringe 

pattern from the 546 nm Hg emission line appeared. To verify the Littrow setting, the 

actual Littrow was calculated using the fringe equation (equation 3) where σ is the 

wavenumber for the 546 nm line and θL is calculated using the grating equation and 

estimating λL as 544 nm. The fringes/cm can be obtained from the number of 

fringes/pixel on the charge-coupled device (CCD) divided by the width of each pixel. An 

image of the fringe pattern used to count the number of fringes over a pixel range is 

shown in figure 3.3. The fringes/cm can be obtained from a cross-section plot of the 

interference pattern shown in figure 3.4. Simply count the number of peaks over a 

specific range of pixels and divide that number by the product of the specific pixel range 

times pixel size. 

A calibration curve was made to set the SHS to a specific Littrow wavelength 

simply based on the micrometer settings on the rotational stages. The calibration curve 

(in Figure 3.5) has a slope of 1.312 ±0.004 μm/nm and a y-intercept of 532.85 ±0.1 nm 

both calculated using the linear regression algorithm in Microsoft Excel. Using the 

regression line from the calibration curve the Littrow can be set to any wavelength by the 

appropriate rotation stage settings. This was how the SHLS was switched back and forth 



www.manaraa.com

 

16 

to measure Cu LIBS or the mercury lamp. To verify the accuracy of the calibration 

method, Littrow was set to 532 nm and the required adjustment was made to successfully 

measure the 521 nm Cu emission line. Likewise, the Littrow was set and adjusted to 

successfully measure the 576 nm and 579 nm mercury emission lines. 

To test the resolution of the SHS, measurements of the 546 nm, 576 nm, and 579 

nm mercury emission lines were made in two ways. First, using the 300 groove/mm 

gratings, the second order from gratings increases the resolving power of the SHS two-

fold. The resolution of the 546 nm mercury emission line using the first order of those 

gratings was 108 pm determined by measuring the FWHM of the 546 nm mercury line 

shown in Figure 3.6. The theoretical resolving power of this system is 15,000. The 

resolution achieved was 5056 with a spectral range of 22.7 nm for the first order 

measurements. The gratings were simultaneously rotated to measure the same emission 

line using the second order and a resolution of 61.1 pm was achieved as shown in Figure 

3.7. The expected resolution should have been half that of the first-order since the 

resolving power was doubled. The actual resolution using the second order was 8936 

with a spectral range of 6.3 nm which is considerably lower than two-times the expected 

resolution and less than half the expected spectral range. One reason for the loss of 

resolution may be due to the lack of filters in the system to block out higher orders from 

lower wavelengths which may reduce resolution. Finally, the diffraction gratings were 

exchanged for 600 groove/mm gratings blazed at 500 nm which has the same resolving 

power as the second order previously mentioned. Measuring the mercury lamp with the 

new system produced a resolution for the 546 nm mercury emission line of 58.2 pm with 

a spectral range of 9.6 nm meaning that the actual resolution with the 600 groove/mm 



www.manaraa.com

 

17 

gratings was 9383 which is nearly double that with the 300 gr/mm gratings in first order. 

The spectrum is shown in Figure 3.8. However, the resolution of the 576 nm emission 

line shown in Figure 3.9 was 24.8 pm giving an experimental resolution of 23265 which 

is nearly five times higher and near the expected resolving power. One reason the 

resolution is so much better at 576 nm than 546 nm is placement of a 450 nm long-pass 

filter in front of the entrance aperture to the SHS. The filter eliminated more off-axis light 

and blocked the higher orders from the shorter wavelengths from entering the SHS. 

Another possibility is the intensity of the 546 nm emission is much higher and thus 

circular fringe patterns caused by etaloning in the beam-splitter have much higher 

intensity too which causes broadening of the spectral line. Future studies could include 

addition of a neutral density filter to reduce the intensity of the 546 nm emission to see if 

the FWHM is improved. 

The signal-to-noise ratios (S/N) were calculated by dividing the signal intensity 

by the average of the baseline noise. The S/N of the higher groove density gratings (75.3) 

was nearly three times larger than the second order from the lower groove density 

gratings (28.4) because the first order from the diffraction gratings is the most efficient 

which can be observed visually and typical efficiency for this type of diffraction grating 

for the first order is ~70 – 75% with the efficiency dropping sharply to ~5% for the 

second order.  

To show the stability of the SHLS, two more spectra are shown in Figures 3.10 

and 3.11 for the 576 nm and 579 nm mercury emission lines which were acquired at two-

week intervals. Each spectrum shows similar resolution in the two emission lines despite 
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the fact the Littrow was shifted between other Littrow settings to measure around 520 nm 

for copper up to 669 nm to measure lithium. 

A copper LIBS measurement was made with Littrow set near 580 nm to verify 

accuracy and calibration of the micrometer adjusted rotational stage. The spectrum is 

shown in Figure 3.12. The Cu peak has a resolution of 62 pm which was the highest 

resolution obtained with LIBS using the SHLS. Due to time constraints further evaluation 

was not possible. 

3.3 CONCLUSION 

We have shown that a small SHLS, with 25 mm aperture and 600 grooves/mm 

gratings, has resolution of 58 pm. Although this is not sufficient to resolve U (235U/238U 

~26 pm), Pu (239Pu/240Pu~ 6 pm), or Li (6Li/7Li ~15 pm), it does show the potential for a 

small SHLS to measure isotopes since it is possible to increase the resolving power of the 

SHS by several factors as demonstrated by Harlander with the Spatial Heterodyne Imager 

for Mesospheric Radicals (SHIMMER) instrument used for the remote sensing of 

hydroxyl radicals in the middle atmosphere. 28 It is also possible that spectra measured 

with the current SHLS can resolve uranium and lithium isotopes using curve fitting 

algorithms.
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Figure 3.1 Schematic and working principle of the SHS. The basic components of the SHS are the collection lens 

(CL), beam-splitter (BS), diffraction gratings (G1 and G2), imaging lens (placement shown in Figure 3.2) and the 

detector (CCD). The diffraction of the heterodyned wavelengths produces crossing wave-fronts at the beam-splitter. 

The crossing wave-fronts produce wavelength dependent interference patterns imaged onto the CCD. 
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Figure 3.2 The photos show the current SHLS. To the left is the Nikon 105 mm imaging lens (A) with a spatial filter 

(B) and the PI-MAX iCCD (C) shown to the left of the imaging lens. The photo to the right shows from top to 

bottom: the f/2 collection lens (D), iris (15 mm opening) (E), 450 nm long pass filter (F), a second iris (15 mm 

opening) (G), the beam-splitter (H), and the two 600 grooves/mm diffraction gratings (I).  
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Figure 3.3 The figure shows a screenshot of an interference pattern for the 546 nm elemental mercury emission that 

can be used to count the number of fringes over a pixel range which can be converted to give the number of 

fringes/cm used in equation 3.  
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Figure 3.4 Cross-section plot of the interferogram shown in Figure 3.3. Which allows higher accuracy when 

counting the number of maxima over a specific pixel range to determine the fringes/cm. The y-axis is Intensity and 

the x-axis is pixel number. 
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Figure 3.5 The graph above shows the calibration curve and linear regression used to accurately shift Littrow 

without a monochromatic light source. As can be seen the correlation is very high. The slope was 1.312 ±0.004 

nm/μm and the intercept was 532.9 ±0.1 nm. 
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Figure 3.6 spectrum above shows the 546 nm elemental emission line of the mercury reference lamp using the first 

order of the 300 groove/mm diffraction gratings.  
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Figure 3.7 The spectrum above shows the 546 nm elemental emission line of the mercury reference lamp using the 

second order of the 300 groove/mm diffraction gratings.  
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Figure 3.8 This spectrum shows the 546 nm elemental emission line of the mercury reference lamp using the first 

order of the 600 groove/mm diffraction gratings.  
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Figure 3.9 This figure shows the spectrum of the 576 nm and 579 nm elemental emission lines of the mercury 

reference lamp using the first order of the 600 groove/mm diffraction gratings. 
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Figure 3.10 The spectrum above is a repeat of Figure 3.9 but the measurement was made after Littrow had been 

shifted back and forth between 520 nm to 669 nm.  
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Figure 3.11 The spectrum above is a repeat of Figure 3.9 but the measurement was made two weeks after Littrow 

had been shifted back and forth between 520 nm to 669 nm.  
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Figure 3.12 The figure shows a copper LIBS spectrum of the 578 nm elemental emission line. The resolution was 

the best measured with the SHLS so far. 



www.manaraa.com

 

31 

REFERENCES

(1) D.A. Cremers and J. Radziemski. “Handbook of Laser-Induced Breakdown 

Spectroscopy”. 2nd Edition. John Wiley & Sons, Ltd. Chichester, West Sussex, 

UK. 2012. 

(2) D.A. Cremers, A. Beddingfield, R. Smithwick. “Monitoring Uranium, Hydrogen, 

and Lithium and Their Isotopes Using a Compact Laser-Induced Breakdown 

Spectroscopy (LIBS) Probe and High-Resolution Spectrometer”. Applied 

Spectroscopy. 2012. 66(3) p. 250-261. 

(3) R. E. Russo, T. W. Suen, A. A. Bol’shakov, J. Yoo, O. Sorkhabi, X. Mao, J. 

Gonzalez, D. Oropeza, and V. Zorba. “Laser Plasma Spectroscopy”. Journal of 

Analytical Atomic Spectrometry. 2011 26: p. 1596-1603. 

(4) C. López-Moreno, S. Palanco, J.J. Laserna, F. DeLucia Jr., A.W. Miziolek, J. 

Rose, R.A. Walters, A.I. Whitehouse. “Test of a stand-off laser-induced 

breakdown spectroscopy sensor for the detection of explosive residues on solid 

surfaces”. Journal of Analytical Atomic Spectrometry. 2006. 21: p. 55-60. 

(5) A.K. Knight, N.L. Scherbarth, D.A. Cremers, M.J. Ferris. “Characterization of 

Laser-induced Breakdown Spectroscopy (LIBS) for Application to Space 

Exploration”. Applied Spectroscopy. 2000. p. 139-148. 

(6) Gaona, P. Lucena, J. Moros, F.J. Fortes, S. Guirado, J. Serrano, and J.J. Laserna. 

“Evaluating the Use of Standoff LIBS in Architectural Heritage: Surveying the 

Cathedral of Malaga”. Journal of Analytical Atomic Spectrometry. 2013. 28 p. 

810-820. 

(7) J. Moros, J.J. Laserna. “New Raman-Laser-Induced Breakdown Spectroscopy 

Identity of Explosives Using Parametric Data Fusion on an Integrated Sensing 

Platform”. Analytical Chemistry. 83(16): p. 6275-6285. 

(8) D.W. Hahn and N. Omenetto. “Laser-Induced Breakdown Spectroscopy (LIBS), 

Part I: Review of Basic Diagnostics and Plasma–Particle Interactions: Still-

Challenging Issues Within the Analytical Plasma Community”. Applied 

Spectroscopy. 2010. 64(12) p. 335A – 366A. 

(9) Y. Markushin, A. Marcano, S. Rock, and N. Melikechi. “Determination of Protein 

Hydrogen Composition by Laser-Induced Breakdown Spectroscopy”. Journal of 

Analytical Atomic Spectrometry. 2010. 25: p. 148-149. 



www.manaraa.com

 

32 

(10) D’Ulivo, M. Onor, E. Pitzalis, R. Spiniello, L. Lampugnani, G. Cristoforetti, S. 

Legnaioli, V. Palleschi, A. Salvetti, and E. Tognoni. “Determination of the 

Deuterium/Hydrogen Ratio in Gas Reaction Products by Laser-Induced 

Breakdown Spectroscopy”. Spectrochimica Acta Part B. 2006. 61: p. 797-802. 

(11) D. E. Spence, P. N. Kean, and W. Sibbett, “60-fsec pulse generation from a self-

mode-locked Ti:sapphire laser,” Optical Letters. 1991. 16(1) p. 42–44. 

(12) A.J. Kox. “Then & Now: The Discovery of the Stark Effect and Its Early 

Theoretical Explanations”. Annalen der Physik. Berlin. 2013. 525(5) p. A63-A66. 

(13) J. Stark. “Observation of the Separation of Spectral Lines by an Electric Field”. 

Nature. 1913. 97(401) p. 401. 

(14) B. Salle, D.A. Cremers, S. Maurice, R.C. Wiens. “Laser-Induced Breakdown 

Spectroscopy for Space Exploration Applications: Influence of the Ambient 

Pressure on the Calibration Curves Prepared from Soil and Clasy Samples”. 

Spectrochimica Acta Part B: Atomic Spectroscopy. 2005. 60(4) p. 479-490. 

(15) S.M. Clegg, R. Wiens, A.K. Misra, S.K. Sharma, J. Lambert, S. Bender, R. 

Newell, K. Nowak-Lovato, S. Smrekar, M. Darby Dyer, and S. Maurice. 

“Planetary Geochemical Investigations Using Raman and Laser-Induced 

Breakdown Spectroscopy”. Applied Spectroscopy. 2014. 68(9) p. 925-936. 

(16) R. González, P. Lucena, L.M. Tobaria, J.J. Laserna. “Standoff LIBS detection of 

explosive residues behind a barrier”. Journal of Analytical Atomic Spectrometry. 

2009. 24(8): p. 1123-1126. 

(17) V. Lazic, A. Palucci, S. Jovicevic, M. Carapanese, C. Poggi, E. Buono. 

“Detection of explosives at trace levels by Laser Induced Breakdown 

Spectroscopy (LIBS)”. Chemical, Biological, Radiological, Nuclear, and 

Explosives (CBRNE) Sensing XI, vol. 7665 of Proceedings of SPIE, April 2010. 

(18) A.J.R. Bauer and S.G. Buckley. “Novel Applications of Laser-Induced 

Breakdown Spectroscopy”. Applied Spectroscopy. 2017. 71(4) p 553-566. 

(19) R. Grönlund, M. Lundqvist, S. Svanberg. “Remote imaging laser-induced 

breakdown spectroscopy and remote cultural heritage ablative cleaning”. Optics 

Letters. 2005. 30(21): 2882-2884. 

(20) P.D. Barnett, N. Lamsal, and S.M. Angel. “Standoff Laser-Induced Breakdown 

Spectroscopy (LIBS) Using a Miniature Wide Field of View Spatial Heterodyne 

Spectrometer with Sub-Microsteradian Collection Optics”. Applied Spectroscopy. 

2017. 71(4) p. 583-590. 

(21) X. Mao, A. A. Bol’shakov, I. Choi, C. P. McKay, D. L. Perry, O. Sorkhabi, and 

R. Russo. “Laser Ablation Molecular Isotopic Spectrometry: Strontium and its 

Isotopes”. Spectrochimica Acta Part B. 2011. 66: p. 767-775. 



www.manaraa.com

 

33 

(22) X. Mao, A. A. Bol’shakov, D. L. Perry, O. Sorkhabi, and R. Russo. “Laser 

Ablation Molecular Isotopic Spectrometry: Paramenter Influence on Boron 

Isotope Measurements”. Spectrochimica Acta Part B. 2011. 66: p. 604-609. 

(23) E. de Hoffmann and V. Stroobant. “Mass Spectrometry: Principles and 

Applications”. 3rd Edition. John Wiley & Sons, Ltd. Chichester, West Sussex, 

UK. 2007. 

(24) M. Krachler, R. Alvarez-Sarandes, and G. Rasmussen. “High-Resolution 

Inductively Coupled Plasma Optical Emission Spectrometry for 234U/238Pu Age 

Dating of Plutonium Materials and Comparison to Sector Field Inductively 

Coupled Plasma Mass Spectrometry”. Journal of Analytical Chemistry. 2016. 88 

p. 8862-8869. 

(25) A.A. Bol’shakov, X. Mao, J.J. Gonzalez, and R.E. Russo. “Laser Ablation 

Molecular Isotopic Spectrometry (LAMIS): Current State of the Art”. Journal of 

od Analytical Atomic Spectrometry. 2016. 31 p. 119-134. 

(26) J.M. Harlander. Spatial Heterodyne Spectroscopy: Interferometric Performance at 

Any Wavelength without Scanning. [Ph.D. Dissertation]. Madison, Wisconsin: 

University of Wisconsin-Madison, 1991. 

(27) J.M. Harlander, F.L. Roesler, R.J. Reynolds, K. Jaehnig, W.A. Sanders. 

“Differential, Field-Widened Spatial Heterodyne Spectrometer for Investigations 

at High Spectral Resolution of the Diffuse Far Ultraviolet 1548 Å Emission Line 

from the Interstellar Medium”. Proc. SPIE. 1993. 2006. p. 139-148. 

(28) J.M. Harlander, F.L. Roesler, J.G. Cardon, C.R. Englert, and R.R. Conway. 

“SHIMMER: A Spatial Heterodyne Spectrometer for Remote Sensing of Earth’s 

Middle Atmosphere”. Applied Optics. 2002. 41(7) p. 1343-1352. 

(29) N.R. Gomer, C.M. Gordon, P. Lucey, S.K. Sharma, J.C. Carter, and S.M. Angel. 

“Raman Spectroscopy Using a Spatial Heterodyne Spectrometer: Proof of 

Concept”. Applied Spectroscopy. 2011. 65 p. 849-857. 

(30) I. B. Gornushkin, B. W. Smith, U. Panne, and N. Omenetto. “Laser-Induced 

Breakdown Spectroscopy Combined with Spatial Heterodyne Spectroscopy”. 

Applied Spectroscopy. 2014. 68(9): p. 1076-1084. 


	University of South Carolina
	Scholar Commons
	2018

	Development of a High-Resolution Spatial Heterodyne Libs Spectrometer
	Kevin A. Dudley
	Recommended Citation


	tmp.1533748342.pdf.B3cEh

